BNilai Perbandingan Trigonometri Sudut Istimewa . BAB I GARIS, SUDUT, LINGKARAN, DAN SEGITIGA Buktikan bahwa tg tg 3 . b. Buktikan bahwa segitiga ini bersudut lancip. c. Buktikanlah bahwa titik tinggi dari segitiga ini membagi garis tinggi dari C dalam dua bagian yang berbanding 2 : 1. 5,4950 2 4 1 3 2 1 5, 4950 18,1950 5, 4950 4, 2656 b Segitiga tumpul. Segitiga tumpul adalah segitiga yang salah satu dari tiga sudutnya merupakan sudut tumpul atau besar sudutnya antara 90 o dan 180 o. c. Segitiga siku-siku. Segitiga siku-siku adalah segitiga yang salah satu sudutnya siku-siku atau besar sudutnya 90 o. 2. Jenis-jenis Segitiga Ditinjau dari Panjang Sisi-sisinya Meskipunsetiap gunung berslogan 'Gunung Bukan Tempat Sampah' namun banyak sekali pendaki yang tidak menghiraukannya. Apalagi Gunung Gede Pangrango merupakan salah satu gunung favorit bagi para Segitigaistimewa ini tepat banget angka-angkanya. Bisa dibilang sebagai sudut istimewa trigonometri. Segitiga istimewa ini dibangun dari sesuatu yang kita sudah tahu pasti, contohnya segitiga sama sisi dan persegi. Mengapa kedua bangun tersebut? Karena kita sudah tahu jumlah sudut pada segitiga sama sisi adalah 180 derajat dan pada persegi Padasegitiga terdapat empat garis istimewa yang meliputi garis tinggi, bagi, berat, dan garis sumbu. Garis Tinggi: Garis tinggi adalah garis yang ditarik dari salah satu titik sudut segitiga menuju sisi depan sudut dan tegak lurus terhadap sisi tersebut. Vay Tiền Trả Góp Theo Tháng Chỉ Cần Cmnd Hỗ Trợ Nợ Xấu. Rumus Segitiga Istimewa Rumus segitiga istimewa merupakan pengembangan dari rumus pythagoras dalam segitiga siku – siku . Segitiga apa sajakah yang termasuk kedalam segitiga istimewa ? dan bagaimana rumusnya ? kali ini , kita akan mempelajarinya bersama . Masih ingatkah kalian mengenai rumus pythagoras dan apa fungsinya ? ya betul sekali , rumus pythagoras digunakan untuk menghitung atau mencari panjang salah satu sisi segitiga siku – siku . Selain itu juga , teorema pythagoras juga dapat digunakan untuk menghitung perbandingan sisi – sisi pada segitiga istimewa . Segitiga Siku – siku sama sisi segitiga sudut 45° Perhatikan gambar dibawah ini Segitiga ABC di atas merupakan segitiga siku – siku sama sisi , dengan sudut siku – siku di B dan ∠CAB= ∠BCA = 45° dan panjang BC = 2x . Dengan demikan , panjang BC = AB , dan BC = 2x . Lalu berapakah panjang AC ? Untuk mecari panjang AC , maka kita masukkan pada rumus pythagoras sebagai berikut AC = √ BC2 + AB2 = √2x2 + 2x2 = √8x2 =2x √2 Maka dihasilkan , rumus sbb perbandingan sisi – sisi pada segitiga siku – siku sama sisi adalah tinggi alas sisi miring = 1 1 √2 atau rumus cepat nya adalah 2. Segitiga siku – siku dengan sudut 30°, 90°, 60° Perhatikan gambar di bawah ini Segitiga ACB diatas merupakan segitiga sama sisi , dan apabila di potong menjadi dua menghasilkan dua segitiga siku – siku yaitu ADC , Siku – siku di D dan BDC , siku – siku di D juga . dan di hasilkan juga ∠CAD = ∠CBD =60° , ∠ACD = ∠BCD = 30° , ∠ADC = ∠BDC = 90° . Serta diketahui panjang AC = 2x . Kali ini , kita fokuskan pada ADC yang telah diketahui panjang AC = 2x , untuk mencari AD dan CD kita gunakan rumus pythagoras sebagai berikut CD = √ AC2 – AD2 = √ 2x2 – x2 = √ 4x2 – x2 = √ 3x2 CD = x √ 3 Maka di hasilkan rumus Jadi , perbandingan segitiga istimewa dengan sudut 30°, 90°, 60° adalah alas tinggi sisi miring = 1 √3 2 atau rumus cepatnya adalah Contoh Soal Perhatikan gambar segitiga siku – siku dibawah ini Tentukan panjang AB , apabila diketahui panjang AC = 20 cm ! Penyelesaian Diketahui AC = 20cm , Ditanya AB = . . . .? Jawab Gunakan Rumus maka AB = 1/2 a√2 = 1/2 . 20√2 AB = 10√2 2. Perhatikan gambar di bawah ini Tentukan panjang CB dan AB , apabila diketahui panjang AC = 12√3 ! Penyelesaian Diketahui AC = 12√3 Ditanta CB dan AB = . . . ? Jawab ingat rumus di bawah ini maka dihasilkan CB = 1/2 . a√3 = 1/2 . 12√3 .√3 = 1/2 .12 . 3 = 18 cm AB = 1/ =1/2 . 12√3 = 6√3 cm 3. Perhatikan gambar di bawah ini Gambar di atas merupakan bangun persegi yang terbelah menjadi 2 segitiga , dengan panjang garis potong AC =10cm , dan ∠CAB = 45°. Maka tentukan a. panjang AB b. Luas persegi ABCD c. Keliling persegi ABCD Penyelesaian a. Panjang AB = . . .? gunakan rumus AB = 1/2 . a√2 AB = 1/2 . 10√2 AB = 5√2 b. Luas persegi ABCD = s x s = 5√2 x 5√2 = 50 cm2 c. Keliling Persegi ABCD = 4s = 4 5√2 = 20 √2 4. Sebuah ADC , dengan ∠DAC = 60°. dan panjang AC = 14cm . Tentukan panjang AD ! Penyelesaian masukan ke rumus di misalkan AC = a , AD = 1/2a√3 maka di hasilkan AD = 1/2a√3 AD = 1/2 . 14√3 AD = 7√3 cm Demikian penjelasan mengenai Rumus Segitiga Istimewa dalam matematika . Semoga dengan penjelasan yang singkat , kalian semua sapat memahami apa saja yang termasuk segitiga istimewa beserta dengan rumusnya . Inti dari rumus segitiga istimewa adalah prisipnya sama dengan teorema pythagoras . Dan fahami tentang sudutnya apakah segitiga tersebut bersudut 30°, 60°, 90° ataukah bersedut 45 °, 45°, 90° .Jika sudah menguasai rumus pythagoras dan memahami sudut – sudutnya maka akan mudah dalam mengerjakan soal segitiga istimewa . Semoga bermanfaat . Unduh PDF Unduh PDF Salah satu tantangan saat menciptakan suatu sudut adalah menjadikannya siku-siku. Walaupun kamar Anda tidak perlu berbentuk persegi sempurna, yang terbaik adalah mendapatkan sudut-sudut yang ukurannya mendekati 90 derajat. Jika tidak, keramik ataupun bentangan karpet akan jelas terlihat 'miring' dari satu sisi ruang ke sisi lain. Metode 3-4-5 juga bermanfaat untuk proyek pekerjaan kayu yang lebih kecil, untuk menjamin bahwa semua bagian akan tersusun dengan pas/tepat seperti yang direncanakan. 1 Pahami kaidah 3-4-5. Jika sebuah segitiga memiliki sisi-sisi berukuran 3, 4, dan 5 meter atau satuan lain apa pun, segitiga tersebut haruslah sebuah segitiga siku-siku dengan sebuah sudut 90º di antara sisi-sisi pendeknya. Jika Anda dapat "menemukan" segitiga tersebut di sudut kamar, Anda tahu sudut tersebut adalah siku-siku. Kaidah ini berdasarkan pada Teorema Pythagoras dalam geometri A2 + B2 = C2 untuk sebuah segitiga siku-siku. C adalah sisi terpanjang disebut hipotenusa atau sisi miring sedangkan A dan B adalah dua "kaki-kaki" yang lebih pendek[1] 3-4-5 adalah ukuran yang sangat baik untuk memeriksa karena semuanya adalah bilangan bulat, kecil. Pemeriksaan secara matematis 32 + 42 = 9 + 16 = 25 = 52. 2 Ukurlah tiga satuan dimulai dari sudut ruang ke salah satu sisi. Anda dapat menggunakan satuan meter, kaki feet, atau satuan yang lain. Berikan tanda pada ujung tiga satuan yang Anda ukur tersebut. Anda dapat mengalikan setiap bilangan dengan jumlah sama dan tetap gunakan bilangan tersebut. Cobalah 30-40-50 sentimeter jika menggunakan sistem metrik. Untuk ruang yang besar, gunakan 6-8-10 atau 9-12-15 meter atau kaki. 3Ukurlah empat satuan sepanjang sisi yang lain. Dengan menggunakan satuan yang sama, ukurlah sisi yang kedua–berharap–pada sudut 90º untuk yang pertama. Tandai ujungnya pada empat satuan. 4 Ukurlah jarak antara dua tanda yang telah Anda buat. Jika jarak tersebut adalah 5 satuan, sudut tersebut adalah sudut siku-siku.[2] Jika jarak tersebut kurang dari 5 satuan, besar sudut tersebut kurang dari 90º. Renggangkan kedua sisi tersebut. Jika jarak tersebut lebih dari 5 satuan, sudut tersebut berukuran lebih dari 90º. Dekatkan sisi-sisi tersebut secara bersamaan. Iklan Cara ini bisa lebih akurat daripada menggunakan siku tukang kayu atau pasekon, yang mungkin terlalu kecil untuk memperoleh ukuran tepat suatu sisi yang lebih panjang lagi. Makin besar satuannya, makin akurat hasil yang Anda dapat.[3] Iklan Hal yang Anda Butuhkan Meteran/pita pengukur Pensil Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda? Hallo Gengs apa kabar? Semoga kita selalu dalam lindungan-Nya. Pada kesempatan kali ini kita akan belajar tentang trigonometri. Lebih khususnya trigonometri pada sudut istimewa. Sebelum kita menuju ke latihan soal, akan di berikan beberapa catatan penting. Dimana catatan ini akan digunakan untuk menjawab soal nantinya. Trigonometri adalah ilmu matematika yang mempelajari tentang sudut, sisi, dan perbandingan antara sudut terhadap sisi. Dasarnya menggunakan bangun datar segitiga. Hal ini karena arti dari kata trigonometri sendiri yang dalam bahasa Yunani yang berarti ukuran-ukuran dalam sudut segitiga. Sudut istimewa dibagi kedalam 4 kuadran yaitu kuadran I, kuadran II, kuadran III dan kuadran IV. Kuadran 1 Rentang sudut dari 0° – 90° dengan nilai sinus, cosinus dan tangen positif. Kuadran 2 Rentang sudut dari 90° – 180° dengan nilai cosinus dan tangen negatif, sinus positif. Kuadran 3 Rentang sudut dari 180° – 270° dengan nilai sinus dan cosinus negatif, tangen positif. Kuadran 4 Rentang sudut dari 270° – 360° dengan nilai sinus dan tangent negatif, cosinus positif. Berikut ini merupakan nilai sudut pada masing-masing kuadran. Nahhhh setelah kita mengetahui nilai dari setiap sudut-sudutnya, selanjutnya kita akan masuk pada latihan soal-soal. CONTOH 1 sin [-30°] = – sin 30° = – 1/2 CONTOH 2 cos [-60°] = cos 60° = 1/2 CONTOH 3 tan [-45°] = – tan 45° = – 1 CONTOH 4 Soal Berapa nilai sin 120° Jawaban Cara 1 120 = 90 + 30, jadi sin 120° dapat dihitung dengan Sin 120° = Sin [90° + 30°] = Cos 30° Nnilainya positif karena soalnya adalah sin 120°, di kuadran 2, maka hasilnya positif. Cos 30° = ½ √3 Cara 2 Coba perhatikan gambar di bawah ini Selain cara 1, kita dapat membuat 120° = 180° – 60°. Sehingga Sin 120° = Sin [180° – 60°] Dengan mengacu pada gambar di atas, dapat kita lihat bahwa sin [180° – α°] = sin α° maka akan diperoleh sebagai berikut Sin 120° = Sin [180° – 60°] = sin 60o = ½ √3 CONTOH 5 Sin 150 = sin [180 – 30] = sin 30 = 1/2 CONTOH 6 tan 135 = tan [180 – 45] = – tan 45 = – 1/1 = -1 CONTOH 7 Soal Tentukan nilai dari 2 cos 75° cos 15° Jawaban 2 cos 75° cos 15° = cos [75 +15]° + cos [75 – 15]° = cos 90° + cos 60° = 0 + ½ = ½ CONTOH 8 Soal Tentukan nilai dari cos 315° Jawaban Cara 1 dengan mengacu pada gambar di bawah ini dapat kita buat menjadi cos 315° = cos [360° – 45°] Dengan melihat gambar di atas bahwa cos [360° – α°] = cos α° Sehingga cos 315° = cos [360° – 45°] =cos 45° = ½ √2 Cara 2 Dengan mengacu pada gambar di bawah ini dapat kita buat cos 315° = cos [270° + 45°] dengan melihat gambar di atas bahwa cos [270° + α°] = sin α° maka cos 315° = cos [270° + 45°] = cos 45° = ½ √2 CONTOH 9 Soal Tentukan nilai dari sin 105° + sin 15° Jawaban sin 105° + sin 15° = 2 sin 1/2 [105° + 15°] . cos 1/2 [105° – 15°] = 2 sin 1/2 [120°] . cos 1/2 [90°] = 2 sin 60° . cos 45° = 2. 1/2 √3. 1/2 √2 = 1/2 √6 CONTOH 10 Soal Tentukan nilai dari cos 75° – cos 15° Jawaban cos 75° – cos 15° = -2 sin 1/2 [75° + 15°] . sin 1/2 [75° – 15°] = -2 sin 1/2 [90°] . sin 1/2 [60°] = -2 sin 45° . sin 30° = -2. 1/2 √2. 1/2 = -1/2 √2 CONTOH 11 Soal Tentukan nilai dari 2 sin75 cos15 ! Jawaban 2 sin75 cos 15 = sin[75 + 15] + sin[75 – 15] = sin 90 + sin 60 = 1 + 1/2 √3 CONTOH 12 Soal Dengan menggunakan rumus penjumlahan dan selisih dua sudut, tentukan nilai dari ! a. sin 75° b. cos 15° Jawaban a Untuk menjawab pertanyaan di atas, kita perlu mengingat kembali rumus selisih dibawah ini sin [ α + β ] = sin α cos β + cos α sin β sin 75° = sin [ 45° + 30°] = sin 45° cos 30° + cos 45° sin 30° = 1/2 √2 . 1/2 √3 + 1/2 √2 . 1/2 = 1/4 √6 + 1/4 √2 = 1/4 [ √6 + √2] Jawaban b Untuk menjawab pertanyaan di atas, kita perlu mengingat kembali rumus selisih dibawah ini cos α – β = cos α cos β + sin α sin β Kemudian kita dapat menjawab pertanyaan di atas. Langkah-langkah penyelesaiannya sebagai berikut cos 15° = cos [ 45° – 30°] = cos 45 cos 30 + sin 45 sin 30 = 1/2 √2 . √3 + 1/2 √2 . 1/2 = 1/4 √6 + 1/4 √2 = 1/4 [ √6 + √2] CONTOH 13 Soal Diketahui cos x – y = 4/5 dan sin y = 3/10. Tentukan nilai tan y Jawaban cos [x – y] = cos x cos y + sin x sin y 4/5 = cos x cos y + 3/10 4/5 – 3/10 = cos x cos y 1/2 = cos x cos y tan y = [sin x sin y]/[cos x cos y] = [3/10] / [1/2] = 3/5 CONTOH 14 Soal Jika yang diketahui adalah sin x = 8/10, 0 < x < 90°. Maka tentukan nilai cos 3x Jawaban sin x = 8/10 cos x = 6/10 cos 3x = cos [2x + x] = [cos 2x][cos x] – [sin 2x][sin x] = cos [x + x][cos x] – [sin [x + x]][sin x] = [cos2 x – sin2 x][cos x] – [x cos x + cos x sin x][sin x] = [[3/5]2 – [4/5]2][3/5] – [4/ + 3/ = [9/25 – 16/25][3/5] – [12/25 + 12/25][4/5] = [-7/25][3/5] – [24/25][4/5] = [-21/125] – [96/125] = – 117/125 Nahhhhh…. pada 14 contoh di atas, soal-soalnya hanya berada pada 0° – 360°. Bagaimana jika sedutnya lebih dari 360° ???? Nahhhh berikut ini merupakan contoh.. CONTOH 13 Soal Tentukan nilai dari sin 660° Jawaban sin 660° = sin [720° – 60°] = sin [2×360° – 60°] = – sin 60° = – 1/2 √3 Demikian contoh-contoh soalnya.. Semoga bermanfaat Segitiga siku-siku adalah jenis segitiga yang memiliki karakteristik salah satu sudutnya sama dengan 90o besar sudut 90o = sudut siku-siku. Dalam sebuah segitiga, ketiga sudutnya memiliki jumlah sama dengan 180o. Sehingga jumlah dua buah buah sudut lainnya pada segitiga siku-siku adalah 90o. Sudut 90o bersama dengan sudut-sudut 30o, 37o, 45o, 53o, dan 60o merupakan sudut istimewa. Besar ketiga sudut dalam segitiga menentukan perbandingan perbandingan panjang sisi segitiga yang memiliki hubungan sebanding. Untuk perbandingan sisi segitiga siku-siku dengan sudut istimewa dapat dinyatakan dalam perbandingan bilangan real positif. Bagaimana perbandingan sisi segitiga siku-siku dengan istimewa? Sobat idshcool dapat mencari tahu jawabannya melalui ulasan di bawah. Table of Contents Hubungan Panjang Ketiga Sisi Segitiga Siku-Siku Perbandingan Sisi Segitiga Siku-Siku dengan Sudut Istimewa 30o, 60o, dan 90o Perbandingan Sisi Segitiga Siku-Siku dengan Sudut Istimewa 45o, 45o, dan 90o Perbandingan Sisi Segitiga Siku-Siku dengan Sudut Istimewa 37o, 53o, dan 90o Contoh Penggunaan Rumus Perbandingan Sisi Segitiga Siku-Siku Contoh Soal dan Pembahasan Contoh 1 – Soal Perbandingan Sisi Segitiga Siku-Siku Contoh 2 – Soal Perbandingan Sisi Segitiga Siku-Siku Hubungan Panjang Ketiga Sisi Segitiga Siku-Siku Pada sebuah segitiga siku – siku terdapat persamaan yang menyatakan hubungan antara panjang sisi – sisi segitiga. Hubungan tersebut dinyatakan dalam persamaan kuadrat sisi miring sama dengan jumlah kuadrat kedua sisinya. Pernyataan tersebut sesuai dengan sebuah teorema yang dikenal sebagai teorema Pythagoras. Persamaan Pythagoras dapat digunakan untuk menghitung sisi miring segitiga jika kedua sisi lainnya diketahui. Misalnya AC merupakan sisi miring dari segitiga ABC dengan sudut siku-siku di titik B. Diketahui panjang sisi AB dan BC secara urut adalah 6 cm dan 8 cm. Perhitungan dengan teorema pthagoras akan menghasilkan panjang sisi AC untuk segitiga tersebut adalah 10 cm. Jika yang diketahui hanya sisi miring dan ketiga sudut segitiga yaitu 30o, 60o, dan 90o maka panjang dua sisi segitiga lainnya dapat dihitung menggunakan perbandingan sisi-sisinya. Diketahui bahwa 30o, 60o, dan 90o merupakan sudut istimewa, sehingga panjang sisi segitig siku-siku berupa perbandingan bilangan real positif. Baca Juga Cara Menghitung Tinggi Limas Sebuah segitiga siku-siku dengan sudut isitimewa 30o, 60o, dan 90o memiliki perbandingan panjang sisi 1 √3 2. Perbandingan panjang sisi segitiga siku-siku tersebut diperoleh dengan beberapa langkah yang memanfaatkan sifat-sifat segitiga. Sifat yang digunakan adalah sifat pada segitiga sama sisi yaitu ketiga panjang sisinya sama panjang dan ketiga sudutnya sama besar. Sesuai sifatnya, besar ketiga sudut pada segitiga sama sisi adalah 60o. Jika dari salah satu titik segitiga dibuat garis bagi maka akan terbentuk segitiga siku-siku. Besar dua buah sudut lainnya pada segitiga siku-siku yang terbentuk adalah 30o dan 60o. Jika segitiga sama sisi pada awalnya memiliki panjang 2 satuan maka akan terbentuk segitiga siku-siku dengan panjang sisi miring 2 dan salah satu sisi tegaknya adalah 1 satuan. Panjang sisi tegak pada segitiga siku-siku yang lainnya dapat dihitung menggunakan teorema Pythagoras. Sehingga, dapat diperoleh perbandingan sisi segitiga siku-siku dengan sudut istimewa 30o, 60o, dan 90o adalah 1 √3 2. Perbandingan Sisi Segitiga Siku-Siku dengan Sudut Istimewa 45o, 45o, dan 90o Segitiga siku-siku dengan sudut istimewa 45o, 45o, dan 90o merupakan segitiga siku-siku sama kaki. Sisi-sisi yang menghadap sudut dengan besar 45o pada segitiga siku-siku sama kaki merupakan sisi tegak. Sementara sisi segitiga yang menghadap sudut dengan besar 90o merupakan sisi miring. Panjang sisi segitiga yang berhadapan dengan besar sudut yang sama akan sama panjang. Sehingga, panjang sisi yang menghadap besar sudut 45o adalah sama panjang. Andaikan panjang sisi tegak segitiga siku-siku adalah 1 satuan maka sisi miring segitiga siku-siku dapat diketahui. Berdasarkan teorema pythagoras, panjang sisi miring untuk segitiga siku-siku dengan sudut istimewa 45o, 45o, dan 90o adalah √2. Sehingga dapat diperoleh perbandingan panjang sisi segitiga siku-siku dengan istimewa 45o, 45o, dan 90o sama dengan 1 1 √2. Perbandingan Sisi Segitiga Siku-Siku dengan Sudut Istimewa 37o, 53o, dan 90o Berikutnya adalah segitiga siku-siku dengan sudut istimewa 37o, 53o, dan 90o. Segitiga siku-siku dengan besar ketiga sudut 37o, 53o, dan 90o memiliki perbandingan panjang sisi-sisi segitiga yaitu 3 4 5. Sisi terpanjang merupakan bagian sisi segitiga yang menghadap sudut 90o atau sudut siku-siku. Sedangkan sudut terpendeknya adalah sisi segitiga yang menghadap sudut 37o. Baca Juga Jenis – Jenis Segitiga Contoh Penggunaan Rumus Perbandingan Sisi Segitiga Siku-Siku Dari tiga bahasan di atas dapat diperoleh 3 perbandingan panjang sisi segitiga siku-siku dengan sudut istimewa. Di mana ketiga perbandingan antara besar sudut segitiga dengan panjajang sisi segitiga sesuai dengan nilai-nilai berikut. Perbandingan besar sudut dan panjang sisi segitiga siku-siku 30o 60o 90o = 1 √3 245o 45o 90o = 1 1 √237o 53o 90o = 3 4 5 Perbandingan sisi segitiga siku-siku dengan sudut istimewa dapat digunakan untuk menyelesaikan masalah pada soal di bagian pengantar. Pada permasalahan sebelumnya diketahui segitiga PQR siku-siku di Q dengan besar sudut P = 30o dan panjang sisi PR = 18 cm. Panjang sisi PQ dan QR dapat dicari menggunakan perbandingan sisi segitiga siku-siku. dengan sudut istimewa 30o, 60o, dan 90o. Perhatikan bahwa segitiga ABC dan segitiga PQR sebangun, sehingga sisi PQ dan QR dapat dihitung dengan perbandingan sisi segitiga siku-siku 30o 60o 90o = 1 √3 2. Menghitung panjang sisi PQ Menghitung QR Jadi, panjang sisi PQ dan QR pada segitiga PQR secara urut sama dengan 9√3 cm dan 9 cm. Contoh Soal dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk menambah pemahaman bahasan di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasannya. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 – Soal Perbandingan Sisi Segitiga Siku-Siku Panjang sisi AC adalah ….A. 4√2 cmB. 4√3 cmC. 8 cmD. 8√3 cm PemabahasanPada soal terdapat sebuah segitiga siku-siku dengan beberapa informasi seperti berikut. Panjang sisi AB = 4 cmBesar sudut A ∠A = 60oSegitiga siku-siku di sudut B besar sudut B ∠B = 90oBesar sudut C ∠C = 180o ‒ 90o + 60o = 30o Diketahui perbandingan besar sudut A B C = 60o 90o 30o, sehingga perbandingan sisi segitiga siku-siku adalah AB BC AC = 1 √3 2. Menghitung panjang sisi ACAC/AB = 2/1AC/4 = 2/11 × AC = 4 × 2AC = 8 cm Jadi, panjang sisi AC sama dengan cmJawaban C Contoh 2 – Soal Perbandingan Sisi Segitiga Siku-Siku PembahasanDari soal dapat diketahui dua buah sergitiga siku-siku yaitu segitiga ABD dan ACD yang keduanya siku-siku di titik D besar ∠ADB = ∠ADC = 90o. Di mana besar sudut dan panjang sisi yang diketahui sesuai dengan nilai-nilai di bawah Besar sudut ABD ∠ABD = 30o Besar sudut ACD ∠ACD = 60oPanjang sisi AB = 12 cm Sehingga dapat diketahui bahwa besar ∠BAD = 60o dan besar ∠CAD = 60o. Maka perbandingan sisi segitiga untuk kedua segitiga tersebut adalah, ∠ABD ∠BDA ∠BAD = 30o 90o 60o AD AB BD = 1 2 √3∠ACD ∠CDA ∠CAD = 60o 90o 30oAD AC CD = √3 2 1Dapat diperoleh dua perbandingan sisi segitiga siku-siku yaitu,AD AB = 1 2AD AC = √3 2. Menentukan hubungan panjang sisi AD dan ACAD AC = √3 2AD/AC = √3/2AD = √3/2AC Menghitung nilai ACAD AB = 1 2AD 12 = 1 2AD/12 = 1/22 × AD = 1 × 122 × √3/2AC = 1 × 12√3AC = 12AC = 12/√3 = 12/3√3 = 4√3 cm Jadi, panjang sisi AC sama dengan 4√3 B Demikianlah ulasan materi perbandingan sisi segitiga siku-siku dengan sudut istimewa. Terima kasih sudah mengunjungi idschooldotnet, semoga bermanfaat. Baca Juga Pembuktian Jumlah Ketiga Sudut Segitiga = 180o Daftar isi1 Pengertian Teorema Pythagoras 2 Pengertian Tripel Pythagoras 3 Kebalikan Teorema Pythagoras 4 Perbandingan Sisi Segitiga Istimewa 5 Soal dan Pembahasan Teorema Pythagoras Pengertian Teorema PythagorasTeorema Pythagoras dan Tripel Pythagoras atau Rumus / Dalil Pythagoras serta contoh soal dan pembahasan. Teorema Pythagoras merupakan teorema yang menjelaskan hubungan antara tiga sisi-sisi pada segitiga siku-siku. Teorema Pythagoras mengatakan bahwa kuadrat sisi miring pada segitiga siku-siku sama dengan jumlah kuadrat sisi-sisi penyikunya. Perhatikan gambar di bawah! Sesuai teorema Pythagoras, pada segitiga siku-siku berlaku Kuadrat sisi terpanjang hipotenusa sama dengan kuadrat sisi-sisi penyikunya. Dengan demikian, pada segitiga ABC berlaku $a^2 = b^2 + c^2$, sedangkan pada segitiga PQR berlaku $r^2 = p^2 + q^2$.Pengertian Tripel PythagorasTripel Pythagoras adalah tiga bilangan asli dan berlaku kuadrat bilangan terbesar sama dengan jumlah kuadrat bilangan lainnya. Misalkan tiga bilangan asli $a,\ b,\ c$ dimana $a$ merupakan bilangan terbesar dan $a^2 = b^2 + c^2$, maka $a,\ b,\ c$ disebut tripel Pythagoras. Tripel Pytagoras dapat dicari dengan rumus $p^2 + q^2,\ p^2 - q^2,\ 2pq$ dimana $p > q \geq 1$. Contoh $a.\ q = 1, p = 2$ → $p > q \geq 1$ $p^2 + q^2 = 2^2 + 1^2 = 5$ $p^2 - q^2 = 2^2 - 1^2 = 3$ $2pq = = 4$ Dengan demikian 3, 4, dan 5 merupakan tripel Pythagoras. $b.\ q = 3, p = 1$ → $p > q \geq 1$ $p^2 + q^2 = 3^2 + 1^2 = 10$ $p^2 - q^2 = 3^2 - 1^2 = 8$ $2pq = = 6$ Dengan demikian 6, 8,dan 10 merupakan tripel Pythagoras. $c.\ q = 5, p = 2$ → $p > q \geq 1$ $p^2 + q^2 = 5^2 + 2^2 = 29$ $p^2 - q^2 = 5^2 - 2^2 = 21$ $2pq = = 20$ Dengan demikian 20, 21,dan 29 merupakan tripel Pythagoras. Bilangan-bilangan yang merupakan tripel Pythagoras yang umum digunakan A. Bilangan 3 , 4, dan 5 atau kelipatannya. $\begin{matrix} 3 & 4 & 5\\ 6 & 8 &10 \\ 9 & 12 & 15 \\ 12 & 16 & 20 \\ 15& 20 & 25\\ 18 & 24 & 30\\ 21 & 28 & 35\\ 24 & 32 & 40\\ dst & dst & dst\\ \end{matrix}$ B. Bilangan 5, 12, dan 13 atau kelipatannya. $\begin{matrix} 5 & 12 & 13\\ 10 & 24 & 26\\ 15 & 36 &39 \\ 20& 48 & 52\\ dst& dst& dst\\ \end{matrix}$ C. Bilangan 8, 15, dan 17 atau kelipatannya. $\begin{matrix} 8& 15 & 17\\ 16& 30 & 34\\ 24& 45 &51 \\ 32& 60 & 68\\ dst& dst& dst\\ \end{matrix}$ D. Bilangan 7, 24, dan 25 atau kelipatannya. $\begin{matrix} 7& 24 & 25\\ 14& 48 & 50\\ 21& 72 & 75\\ 28& 96& 100\\ dst& dst& dst \end{matrix}$ E. Bilangan 20, 21, dan 29 atau kelipatannya. $\begin{matrix} 20& 21 & 29\\ 40& 42 & 58\\ 60& 63 & 87\\ dst& dst& dst\\ \end{matrix}$ F. Bilangan 9, 40, dan 41 atau kelipatannya. $\begin{matrix} 9& 40 & 41\\ 18& 80 & 82\\ 27& 120 & 123\\ dst& dst& dst\\ \end{matrix}$Kebalikan Teorema PythagorasJika pada segitiga ABC berlaku hubungan $1.\ a^2 = b^2 + c^2$, maka segitiga ABC siku-siku di A. $2.\ b^2 = a^2 + c^2$, maka segitiga ABC siku-siku di B. $3.\ c^2 = a^2 + b^2$, maka segitiga ABC siku-siku di C. $4.\ a^2 b^2 + c^2$, maka segitiga ABC merupakan segitiga tumpul di A. $8.\ b^2 > a^2 + c^2$, maka segitiga ABC merupakan segitiga tumpul di B. $9.\ c^2 > a^2 + b^2$, maka segitiga ABC merupakan segitiga tumpul di Sisi Segitiga IstimewaPerhatikan gambar! 1. Pada segitiga siku-siku dengan sudut lainnya adalah $30^o$ dan $60^o$, maka panjang sisi-sisinya memiliki perbandingan $1 \sqrt{3} 2$ 2. Pada segitiga siku-siku dengan sudut lainnya adalah $45^o$ dan $45^o$, maka panjang sisi-sisinya memiliki perbandingan $1 1 \sqrt{2}$ Untuk memantapkan pengertian dan pemahaman tentang teorema Pythagoras, dalil atau rumus Pythagoras, maupun tripel Pythagoras, silahkan pelajari contoh soal dan pembahasan dan Pembahasan Teorema PythagorasContoh Soal nomor 1 Perhatikan gambar di bawah! Diketahui bidang P, Q, dan R adalah persegi. Jika luas $P = 45\ cm^2$, luas $R = 24\ cm^2$, maka luas $Q$ adalah . . . . $A.\ 17\ cm^2$ $B.\ 19\ cm^2$ $C.\ 21\ cm^2$ $D.\ 25\ cm^2$ [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Panjang sisi persegi P adalah $a$ sehingga luas persegi P $= a^2 = 45\ cm^2$, panjang sisi persegi Q $= b$ sehingga luas persegi Q $= b^2\ cm^2$, panjang sisi persegi R $= c$ sehingga luas persegi R = $c^2 = 24\ cm^2$. Berdasarkan teorema Pythagoras pada segitiga ABC $a^2 = b^2 + c^2$ $45 = b^2 + 24$ $45 - 24 = b^2$ $21 = b^2$ Karena luas persegi Q adalah $b^2$, maka luas persegi Q $= 21\ cm^2$. jawab C. Contoh Soal nomor 2 Diketahui segitiga PQR siku-siku di P, maka pernyataan di bawah ini yang benar adalah . . . . $A.\ p^2 = q^2 + r^2$ $B.\ q^2 = p^2 + r^2$ $C.\ r^2 = p^2 + q^2$ $D.\ q^2 = r^2 - p^2$ [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Lihat gambar di bawah! Sisi terpanjang atau sisi miring atau hipotenusa adalah $p$ dan sisi-sisi penyiku adalah $q$ dan $r$. Berdasarkan teorema Pythagoras kuadrat sisi terpanjang sama dengan jumlah kuadrat sisi-sisi penyiku. Dengan demikian $p^2 = q^2 + r^2$ jawab A. Contoh Soal nomor 3 Berdasarkan gambar di bawah, pernyataan berikut yang tidak benar adalah . . . . $A.\ l^2 = k^2 + m^2$ $B.\ k^2 = l^2 - m^2$ $C.\ m^2 = l^2 - k^2$ $D.\ k^2 = l^2 + m^2$ [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Segitiga siku-siku di L, sehingga $l^2 = k^2 + m^2$ atau $k^2 = l^2 - m^2$ atau $m^2 = l^2 - k^2$ Jadi pernyataan yang tidak benar adalah pernyataan D. jawab D. Contoh Soal nomor 4 Perhatikan gambar di bawah! Segitiga ABC siku-siku di A, panjang $AB = 4$ cm, $AC = 2\sqrt{2}$, maka panjang BC adalah . . . . $A.\ 2\sqrt{5}\ cm$ $B.\ 2\sqrt{6}\ cm$ $C.\ 3\ cm$ $D.\ 3\sqrt{2}\ cm$ [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Menurut teorema Pythagoras $\begin{align} BC^2 &= AB^2 + AC^2\\ &= 4^2 + 2\sqrt{2}^2\\ &= 16 + &= 16 + 8\\ &= 24\\ BC &= \sqrt{24}\\ &= \sqrt{ &= \sqrt{4}.\sqrt{6}\\ &= 2\sqrt{6}\\ \end{align}$ jawab B. Contoh Soal nomor 5 Perhatikan gambar di bawah, jika luas $\Delta PQR = 96\ cm^2$ maka panjang QR adalah . . . . A. 18 cm B. 20 cm C. 24 cm D. 25 cm [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan $\begin{align} L &= \ 96 &= \dfrac{1}{\cancel2}.\cancelto6{12}.PR\\ 96 &= PR &= 16\ cm\\ \\ QR^2 &= PQ^2 + PR^2\\ &= 12^2 + 16^2\\ &= 144 + 256\\ &= 400\\ QR &= \sqrt{400}\\ &= 20\ cm\\ \end{align}$ jawab B. Cara cepat dengan tripel Pythagoras Diketahui PQ = 12 cm dan PR = 16 cm, dengan demikian QR = 20 cm. Ingat bahwa bilangan 12, 16, dan 20 merupakan tripel Pythagoras yaitu kelipatan 4 dari 3, 4, dan 5. Contoh Soal nomor 6 Perhatikan gambar di bawah! Panjang BC = . . . . A. 15 cm B. 17 cm C. 20 cm D. 24 cm [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Menurut teorema Pythagoras $\begin{align} AC^2 &= AB^2 + BC^2\\ 17^2 &= 8^2 + BC^2\\ BC^2 &= 17^2 - 8^2\\ &= 289 - 64\\ &= 225\\ BC &= \sqrt{225}\\ &= 15\ cm\\ \end{align}$ jawab C. Cara cepat dengan tripel Pythagoras Diketahui AB = 8 cm dan AC = 17 cm, maka BC = 15 cm. Ingat bahwa bilangan 8, 15, dan 17 merupakan tripel Pythagoras. Contoh Soal nomor 7 Diketahui segitiga KLM merupakan segitiga sama kaki dengan KL = LM = 20 cm dan KM = 24 cm. Garis LP tegak lurus KM di titik P, maka panjang LP = . . . . A. 15 cm B. 16 cm C. 17 cm D. 18 cm [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Perhatikan gambar di bawah! $\begin{align} KL^2 &= KP^2 + LP^2\\ 20^2 &= 12^2 + LP^2\\ 400 &= 144 + LP^2\\ LP^2 &= 400 - 144\\ &= 256\\ LP &= \sqrt{256}\\ &= 16\ cm\\ \end{align}$ jawab B. Cara cepat dengan tripel Pythagoras Diketahui KP = 12 cm dan KL = 20 cm, maka LP = 16 cm. Ingat bahwa bilangan 12, 16, dan 20 merupakan tripel Pythagoras, yaitu kelipatan 4 dari 3, 4, dan 5. Contoh Soal nomor 8 Perhatikan gambar di bawah! Berdasarkan gambar di atas, nilai dari $a,\ b,\ c$ berturut-turut adalah . . . . A. 15 cm, 10 cm, 16 cm B. 15 cm, 12 cm, 16 cm C. 15 cm, 24 cm, 20 cm D. 17 cm, 15 cm, 21 cm [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Dengan tripel Pythagoras $a = 15$, karena 9, 12, dan 15 merupakan tripel Pythagoras yaitu kelipatan 3 dari 3, 4, dan 5. $b = 10$, karena 10, 24, dan 26 merupakan tripel Pythagoras yaitu kelipatan 2 dari 5, 12, dan 13. $c = 16$, karena 16, 30, dan 34 merupakan tripel Pythagoras yaitu kelipatan 2 dari 8, 15, dan 17. jawab A. Contoh Soal nomor 9 Luas persegi panjang dengan panjang 21 cm dan panjang diagonal 29 cm adalah . . . . $A.\ 360\ cm^2$ $B.\ 380\ cm^2$ $C.\ 400\ cm^2$ $D.\ 420\ cm^2$ [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Lihat gambar di bawah! Dengan tripel Pytagoras Lihat segitiga ABC, AB = 21 cm, AC = 29 cm, maka BC = 20 cm karena 20, 21, dan 29 merupakan Tripel Pythagoras. Dengan demikian $\begin{align} L &= &= &= 420\ cm^2\\ \end{align}$ jawab D. Cara biasa $\begin{align} AC^2 &= AB^2 + BC^2\\ 29^2 &= 21^2 + BC^2\\ 841 &= 441 + BC^2\\ BC^2 &= 841 - 441\\ &= 400\\ BC &= \sqrt{400}\\ &= 20\ cm\\ \\ L &= &= &= 420\ cm^2\\ \end{align}$ Contoh Soal nomor 10 Luas sebuah segitiga siku-siku adalah $336\ cm^2$. Jika panjang salah satu sisi penyikunya adalah 14 cm, maka keliling segitiga itu adalah . . . . A. 84 cm B. 96 cm C. 112 cm D. 124 cm [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Perhatikan gambar di bawah! $\begin{align} L &= \ 336 &= \ 336 &= PR &= 48\\ \end{align}$ PQ = 14 cm dan PR = 48 cm, maka QR = 50 cm karena 14, 48, dan 50 merupakan tripel Pythagoras yaitu kelipatan 2 dari 7, 24, dan 25. $\begin{align} K &= PQ + QR + PR\\ &= 14 + 50 + 48\\ &= 112\ cm\\ \end{align}$ Contoh Soal nomor 11 Gambar di bawah adalah sebuah layang-layang ABCD. Jika panjang BE = 15 cm, BC = 17 cm, dan AC = 28 cm maka panjang AB adalah . . . . A. 20 cm B. 24 cm C. 25 cm D. 26 cm [Teorema/Dalil/Rumus dan Tripel Pytagoras] Pembahasan Dengan tripel Pythagoras Lihat segitiga BCE ! BE = 15 cm dan BC = 17 cm, maka CE = 8 cm $\begin{align} AC &= AE + CE\\ 28 &= AE + 8\\ AE &= 28 - 8\\ &= 20\ cm\\ \end{align}$ Lihat segitiga ABE ! BE = 15 cm dan AE = 20 cm, maka AB = 25 cm. jawab C. Contoh Soal nomor 12 Diketahui persegi panjang dengan perbandingan panjang lebar = 4 3. Jika keliling persegi panjang tersebut adalah 56 cm, maka panjang diagonal dari persegi panjang tersebut adalah . . . . A. 15 cm B. 17 cm C. 20 cm D. 25 cm [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Perhatikan segitiga ABC pada gambar di bawah! Misalkan panjangnya 4n dan lebarnya 3n, sehingga panjang diagonalnya menjadi 5n, karena kelipatan n dari 3, 4, dan 5 adalah tripel Pythagoras. $K = 2 \times panjang + 2 \times lebar$ $56 = + $56 = 8n + 6n$ $56 = 14n$ $n = 4$ $\begin{align} Panjang\ diagonal &= 5n\\ &= &= 20\ cm\\ \end{align}$ jawab C. Contoh Soal nomor 13 Perhatikan gambar bangun di bawah! Keliling bangun diatas adalah . . . . A. 52 cm B. 58 cm C. 64 cm D. 72 cm [Teorema/Dalil/Rumus dan Tripel Pythagoras Pembahasan Perhatikan gambar di bawah! $AE = DC = 8\ cm$ $AB = AE + BE$ $20 = 8 + BE$ $BE = 20 - 8$ $BE = 12\ cm$ Lihat segitiga BCE ! BE = 12 cm dan BC = 20 cm, maka CE = 16 cm. AD = CE = 16 cm $\begin{align} K &= AB + BC + CD + AD\\ &= 20 + 20 + 8 + 16\\ &= 64\ cm \end{align}$ jawab C. Contoh Soal nomor 14 Perhatikan gambar di bawah! Luas trapesium ABCD pada gambar di atas adalah . . . . $A.\ 280\ cm^2$ $B.\ 330\ cm^2$ $C.\ 420\ cm^2$ $D.\ 450\ cm^2$ [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Lihat segitiga ADE ! AE = 8 cm dan AD = 17 cm, maka DE = 15 cm. Lihat segitiga BCF ! CF = DE = 15 cm dan BC = 25 cm, maka BF = 20 cm. EF = CD = 8 cm Luas Trapesium $\begin{align} AB &= AE + EF + BF\\ &= 8 + 8 + 20\\ &= 36\ cm\\ L &= \dfrac12.AB + CD.DE\\ &= \dfrac12.36 + 8.15\\ &= \dfrac{1}{\cancel2}.\cancelto{22}{44}.15\\ &= &= 330\ cm^2\\ \end{align}$ jawab B. Contoh Soal nomor 15 Perhatikan gambar di bawah! Panjang CE sesuai gambar di atas adalah . . . . A. 8 cm B. 10 cm C. 12 cm D. 15 cm [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Dengan Tripel Pythagoras Perhatikan segitiga ABC ! AB = 15 cm dan AC = 25 cm, maka BC = 20 cm. Perhatikan segitiga BDE ! BD = AB = 15 cm dan DE = 17 cm, maka BE = 8 cm. BC = BE + CE 20 = 8 + CE $CE = 20 - 8 = 12\ cm$. jawab C. Contoh Soal nomor 16 Perhatikan gambar di bawah! Berdasarkan gambar di atas, nilai dari $a + b = . . . .$ A. 27 cm B. 30 cm C. 32 cm D. 35 cm [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Dengan tripel Pythagoras Lihat segitiga ABC ! AB = 9 cm dan BC = 15 cm, maka AC = 12 cm. $p = AC = 12\ cm$ Lihat segitiga BCD ! BC = 15 cm dan CD = 25 cm, maka BD = 20 cm. $q = BD = 20\ cm$ $p + q = 12 + 20 = 32\ cm$ jawab C. Contoh Soal nomor 17 Perhatikan gambar di bawah! Keliling bangun ABCDE adalah . . . . A. 56 cm B. 59 cm C. 74 cm D. 86 cm [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan BC = AB = 15 cm dan CD = 9cm, maka DE = 12 cm. BC = AE = 10 cm. $\begin{align} K &= AB + BC + CD + DE + AE\\ &= 15 + 10 + 9 + 12 + 10\\ &= 56\ cm\\ \end{align}$ Contoh Soal nomor 18. Fadil berada di atas sebuah mercusuar yang memiliki ketinggian 90 meter. Fadil melihat kapal A dan kapal B. Jarak Fadil ke kapal A 150 meter dan jarak Fadil ke kapal B 410 meter. Posisi alas mercusuar, kapal A, dan kapal B segaris. Jarak kapal A dan kapal B adalah . . . . A. 240 meter B. 250 meter C. 280 meter D. 300 meter [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Perhatikan gambar! Perhatikan segitiga ACF ! $\begin{align} AF^2 &= AC^2 + CF^2\\ 150^2 &= AC^2 + 90^2\\ 22500 &= AC^2 + 8100\\ AC^2 &= 22500 - 8100\\ &= 14400\\ AC &= \sqrt{14400}\\ AC &= 120\\ \end{align}$ Perhatikan segitiga BCF ! $\begin{align} BF^2 &= BC^2 + CF^2\\ 410^2 &= BC^2 + 90^2\\ 168100 &= BC^2 + 8100\\ BC^2 &= 168100 - 8100\\ &= 160000\\ BC &= \sqrt{160000}\\ &= 400\\ \end{align}$ $BC = AC + AB$ $400 = 120 + AB$ $AB = 400 - 120 = 280\ meter$ jawab C. Dengan tripel Pythagoras Perhatikan segitiga ACF ! CF = 90 meter dan AF = 150 meter, maka AC = 120 meter. Ingat bahwa 90, 120, dan 150 merupakan kelompok bilangan yang merupakan tripel Pythagoras yaitu kelipatan 30 dari 3, 4, dan 5. Perhatikan segitiga BCF ! CF = 90 meter dan BF = 410 meter, maka BC = 400 meter. Ingat bahwa 90, 400, dan 410 merupakan kelompok bilangan yang merupakan tripel Pythagoras yaitu kelipatan 10 dari 9, 40, dan 41. BC = AC + AB 400 = 120 + AB $AB = 400 - 120 = 280\ meter$ Contoh Soal nomor 19 Sebuah tangga dengan panjang 5 meter disandarkan pada tembok. Jika jarak ujung bawah tangga ke tembok 1,4 meter, maka jarak terdekat ujung atas tangga jika diukur dari tanah adalah . . . . A. 2,4 meter B. 3,2 meter C. 4,8 meter D. 5,4 meter [Teorema/Dalil/Rumus dan tripel Pythagoras] Pembahasan Perhatikan gambar di bawah! Jarak terdekat ujung atas tangga dengan tanah adalah BC. $\begin{align} AC^2 &= AB^2 + BC^2\\ 5^2 &= 1,4^2 + BC^2\\ 25 &= 1,96 + BC^2\\ BC^2 &= 25 - 1,96\\ &= 23,04\\ BC &= \sqrt{23,04}\\ &= 4,8\ meter\\ \end{align}$ jawab C. Dengan tripel Pythagoras AB = 1,4 meter dan AC = 5 meter, maka BC = 4,8 meter karena 1,4 ; 4,8 ; 5 merupakan tripel Pythagoras yaitu kelipatan 0,2 kali 7, 24, dan 25. Contoh Soal nomor 20 Sebuah kapal bergerak dari pelabuhan A menuju pelabuhan B pada jurusan $045^o$ sejauh 120 km, kemudian memutar menuju pelabuhan C pada jurusan $135^o$ sejauh 160 km. Jarak antara pelabuhan A dan pelabuhan C adalah . . . . A. 170 km B. 200 km C. 240 km D. 250 km [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Perhatikan gambar di bawah! Segitiga ABC siku-siku di B. $\begin{align} AC^2 &= AB^2 + BC^2\\ &= 120^2 + 160^2\\ &= 14400 + 25600\\ &= 40000\\ AC &= \sqrt{40000}\\ &= 200\ km\\ \end{align}$ jawab B. Dengan tripel Pythagoras AB = 120 km dan BC = 160 km, maka AC = 200 km karena 120, 160, dan 200 merupkan kelipatan 40 kali 3, 4, dan 5. Contoh Soal nomor 21 Sebuah pesawat berangkat dari kota A ke arah timur laut menuju kota B dengan kecepatan 240 km/jam selama 25 menit, setelah sampai di kota B kemudian langsung berbelok ke arah tenggara menuju kota C dengan kecepatan yang sama dengan kecepatan sebelumnya selama 1 jam. Jarak antara kota A dan kota C adalah . . . . A. 240 km B. 260 km C. 300 km D. 320 km [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Perhatikan gambar di bawah! Perjalanan dari kota A ke kota B $\begin{align} v &= 240\ km/jam\\ t &= 25\ menit\\ &= \dfrac{25}{60}\ jam\\ &= \dfrac{5}{12}\ jam\\ AB &= S_{AB}\\ &= &= \cancelto{20}{240}.\dfrac{5}{\cancel{12}}\\ &= &= 100\ km\\ \end{align}$ Perjalanan dari kota B ke kota C $\begin{align} v &= 240\ km/jam\\ t &= 1\ jam\\ BC &= S_{BC}\\ &= &= &= 240\ km\\ \\ AC^2 &= AB^2 + BC^2\\ &= 100^2 + 240^2\\ &= 10000 + 57600\\ &= 67600\\ AC &= \sqrt{67600}\\ &= 260\ km\\ \end{align}$ jawab B. Contoh Soal nomor 22 Seorang pilot pesawat tempur berada pada ketinggian 8 km di atas tanah melihat ada 2 markas musuh pada jarak 10 km dibelakang pesawat dan pada jarak 17 km di depan pesawat. Jarak antara kedua markas musuh tersebut adalah . . . . A. 15 km B. 17 km C. 21 km D. 25 km [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Perhatikan gambar di bawah! Dengan tripel Pythagoras didapat panjang AD = 6 km dan panjang BD = 15 km, sehingga $\begin{align} AB &= AD + BD\\ &= 6 + 15\\ &= 21\ km\\ \end{align}$ jawab C. Contoh Soal nomor 23 Perhatikan gambar segitiga di bawah! Segitiga PQR siku-siku di P, $\angle Q = 60^o$. Jika panjang QR = 20 cm maka panjang PR adalah . . . . cm. $A.\ 10\sqrt{2}$ $B.\ 10\sqrt{3}$ $C.\ 20$ $D.\ 20\sqrt{3}$ [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Perhatikan gambar segitiga di bawah sera perbandingan sisinya! $\begin{align} \dfrac{PR}{QR} &= \dfrac{\sqrt{3}}{2}\\ \dfrac{PR}{20} &= \dfrac{\sqrt{3}}{2}\\ PR &= \cancelto{10}{20}.\dfrac{\sqrt{3}}{\cancel2}\\ &= 10\sqrt{3}\\ \end{align}$ jawab B. Contoh Soal nomor 24 Perhatikan gambar segitiga di bawah! Segitiga ABC siku-siku di A, $\angle B = 30^o$. Jika panjang AB = 15 cm, maka panjang AC adalah . . . . cm. $A.\ 5\sqrt{2}$ $B.\ 5\sqrt{3}$ $C.\ 10$ $D.\ 10\sqrt{3}$ [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Perhatikan gambar segitiga di bawah dan perbandingan sisinya! $\begin{align} \dfrac{AC}{AB} &= \dfrac{1}{\sqrt{3}}\\ \dfrac{AC}{15} &= \dfrac{1}{\sqrt{3}}\\ AC &= 15.\dfrac{1}{\sqrt{3}}\\ &= 15.\dfrac{1}{\sqrt{3}}.\dfrac{\sqrt{3}}{\sqrt{3}}\\ &= \dfrac{\cancelto5{15}}{\cancel3}\sqrt{3}\\ &= 5\sqrt{3}\\ \end{align}$ jawab B. Contoh Soal nomor 25 Perhatikan gambar segitiga di bawah! Segitiga KLM siku-siku di K, $\angle L = 45^o$. Jika panjang KM = 8 cm, maka panjang LM adalah . . . . cm. $A.\ 8\sqrt{2}$ $B.\ 8\sqrt{3}$ $C.\ 16$ $D.\ 16\sqrt{3}$ [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Perhatikan gambar segitiga dibahah dan perbandingan sisinya. $\begin{align} \dfrac{LM}{KM} &= \dfrac{\sqrt{2}}{1}\\ \dfrac{LM}{8} &= \dfrac{\sqrt{2}}{1}\\ LM &= 8.\sqrt{2}\\ &= 8\sqrt{2}\\ \end{align}$ jawab A. Contoh Soal nomor 26 Seorang bermain layang-layang di sebuah lapangan yang luas dan datar. Sebuah layang-layang diterbangkan dengan menggunakan seutas benang yang panjangnya 40 meter hingga seluruh tali terpakai. Jika sudut antara benang dan tanah adalah $60^o$, maka tinggi layang-layang diukur dari permukaan tanah adalah . . . . meter. $A.\ 10\sqrt{2}$ $B.\ 10\sqrt{3}$ $C.\ 20$ $D.\ 20\sqrt{3}$ [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Perhatikan gambar di bawah! Tinggi layang-layang diukur dari tanah adalah BC. $\begin{align} \dfrac{BC}{AC} &= \dfrac{\sqrt{3}}{2}\\ \dfrac{BC}{40} &= \dfrac{\sqrt{3}}{2}\\ BC &= \cancelto{20}{40}.\dfrac{\sqrt{3}}{\cancel2}\\ &= 20\sqrt{3}\\ \end{align}$ jawab D. Contoh Soal nomor 27 Diantara kelompok sisi di bawah ini yang dapat dibuat segitiga siku-siku adalah . . . . A. 5 cm, 11 cm, 13 cm B. 6 cm, 8 cm, 9 cm C. 8 cm, 15 cm, 17 cm D. 9 cm, 12 cm, 13 cm [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Teorema Pythagoras Sebuah segitiga disebut siku-siku jika kuadrat sisi terpanjang sama dengan jumlah kuadrat sisi yang lain. Berarti harus dihitung kuadrat sisi terpanjangnya dan jumlah kuadrat sisi yang lainnya. Periksa opsi pilihan A Sisi terpanjang adalah 13 cm dan panjang sisi-sisi lainnya adalah 5 cm dan 11 cm. $13^2 = 169$ $5^2 + 11^2 = 25 + 121 = 146$ Kuadrat sisi terpanjang adalah 169 sedangkan jumlah kuadrat sisi lainnya adalah 146. Karena 169 > 146 maka segitiga pada opsi A adalah segitiga tumpul. Periksa opsi B Sisi terpanjang adalah 9 cm dan panjang sisi-sisi lainnya adalah 6 cm dan 8 cm. $9^2 = 81$ $6^2 + 8^2 = 36 + 64 = 100$ Kuadrat sisi terpanjang adalah 81 sedangkan jumlah kuadrat sisi-sisi yang lain adalah 100. Karena 81 < 100 maka segitiga pada opsi B adalah segitiga lancip. Periksa opsi C Sisi terpanjang adalah 17 cm dan panjang sisi-sisi lainnya adalah 8 cm dan 15 cm. $17^2 = 289$ $8^2 + 15^2 = 64 + 225 = 289$ Kuadrat sisi terpanjang adalah 289 sama dengan jumlah kuadrat sisi-sisi yang lainnya sehingga segitiga pada opsi C adalah segitiga siku-siku. Periksa opsi D Sisi terpanjang adalah 13 cm dan panjang sisi-sisi lainnya adalah 9 cm dan 12 cm. $13^2 = 169$ $9^2 + 12^2 = 81 + 144 = 225$ Kuadrat sisi terpanjang adalah 169 sedangkan jumlah kuadrat sisi-sisi lainnya adalah 225. Karena 169 < 225 maka segitiga pada opsi D adalah segitiga lancip. jawab C. Contoh Soal nomor 28 Kelompok bilangan berikut yang merupakan ukuran segitiga lancip adalah . . . . A. 5 cm, 12 cm, 13 cm B. 9 cm, 12 cm, 16 cm C. 6 cm, 8 cm, 12 cm D. 7 cm, 10 cm, 12 cm [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Ingat kembali kebalikan teorema Pythagoras! Jika kuadrat sisi terpanjang lebih kecil dari jumlah kuadrat sisi-sisi yang lain, maka segitiga tersebut adalah segitiga lancip. Periksa opsi yang tersedia satu persatu! Periksa opsi A Sisi terpanjang adalah 13 cm → $13^2 = 169$. Panjang sisi-sisi yang lain adalah 5 cm dan 12 cm → $5^2 + 12^2 = 25 + 144 = 169$. Kuadrat sisi terpanjang sama dengan jumlah kuadrat sisi-sisi yang lainnya, sehingga segitiga pada opsi A adalah segitiga siku-siku. Periksa opsi B Sisi terpanjang adalah 16 cm → $16^2 = 256$. Panjang sisi-sisi yang lainnya adalah 9 cm dan 12 cm → $9^2 + 12^2 = 81 + 144 = 225$. Kuadrat sisi terpanjang lebih besar dibanding jumlah kuadrat sisi-sisi yang lainnya, sehingga segitiga pada opsi B adalah segitiga tumpul. Periksa opsi C Sisi terpanjang adalah 12 cm → $12^2 = 144$. Panjang sisi-sisi yang lainnya adalah 6 cm dan 8 cm → $6^2 + 8^2 = 36 + 64 = 100$. Kuadrat sisi terpanjang lebih besar dibanding jumlah kuadrat sisi-sisi yang lainnya, sehingga segitiga pada opsi C adalah segitiga tumpul. Periksa opsi D Sisi terpanjang adalah 12 cm → $12^2 = 144$. Paanjang sisi-sisi yang lainnya adalah 7 cm dan 10 cm → $7^2 + 10^2 = 49 + 100 = 149$. Kuadrat sisi terpanjang lebih kecil dibanding jumlah kuadrat sisi-sisi yang lainnya, sehingga segitiga pada opsi D adalah segitiga lancip. jawab D. Contoh Soal nomor 29 Jika 9 dan $x - 2$ adalah dua sisi penyiku segitiga dengan $x + 1$ sebagai sisi hipotenusa, nilai $x$ yang mungkin adalah . . . . A. 12 B. 13 C. 14 D. 15 [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan Salah satu kelompok sisi yang merupakan tripel Pythagoras adalah 9, 12, dan 15. $x - 2 = 12 → x = 14$ jawab C. Dengan teorema Pythagoras $x + 1^2 = x - 2^2 + 9^2$ $x^2 + 2x + 1 = x^2 - 4x + 4 + 81$ $x^2 - x^2 + 2x + 4x = 4 + 81 - 1$ $6x = 84$ $x = 14$ Contoh Soal nomor 30 Jika pada $\Delta PQR$ berlaku $PQ^2 = QR^2 - PR^2$ maka $\Delta PQR$ adalah segitiga . . . . A. siku-siku di P B. siku-siku di Q C. siku-siku di R D. tumpul di P [Teorema/Dalil/Rumus dan Tripel Pythagoras] Pembahasan $PQ^2 = QR^2 - PR^2$ $QR^2 = PQ^2 + PR^2$ → Sisi terpanjang adalah QR, berarti segitiga PQR siku-siku di P. Perhatikan gambar di bawah! jawab A. Demikianlah ulasan tentang teorema/dalil/rumus dan tripel Pythagoras serta contoh soal dan pembahasan. Semoga bermanfaat dan dapat membantu. BACA JUGA 1. Bangun datar segitiga. 2. Bangun datar THIS POST

segitiga istimewa 3 4 5